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One-dimensional small-amplitude waves in which the local value of the fundamental 
derivative changes sign are examined. The undisturbed medium is taken to be a 
Navier-Stokes fluid which is a t  rest and uniform with a pressure and density such 
that the fundamental derivative is small. A weak shock theory is developed to  treat 
inviscid motions, and the method of multiple scales is used to derive the nonlinear 
parabolic equation governing the evolution of weakly dissipative waves. The latter 
is used to compute the viscous shock structure. New phenomena of interest include 
shock waves having an entropy jump of the fourth order in the shock strength, shock 
waves having sonic conditions either upstream or downstream of the shock, and 
collisions between expansion and compression shocks. When the fundamental 
derivative of the undisturbed media is identically zero it is shown that the ultimate 
decay of a one-signed pulse is proportional to the negative $-power of the propagation 
time. 

1. Introduction 
A fundamental question in the study of nonlinear acoustics and gasdynamics 

concerns the nature of shock waves possible in any particular fluid. Over a wide range 
of pressures the only shock waves possible in many gases and liquids are in the form 
of compression shocks; i.e. discontinuities for which the pressure of a material 
particle increases in time. However, the existence of expansion shocks cannot be ruled 
out on purely thermodynamic grounds or from the point of view of stability. One 
therefore expects that  materials will ultimately be encountered for which expansion 
shocks are not only possible but necessary. It is well known that compression shocks 
occur in fluids having a fundamental derivative r > 0, and expansion shocks occur 
for those having a< 0 (see e.g. Thompson 1971 ; Thompson & Lambrakis 1973). For 
our purposes i t  is convenient to write the fundamental derivative as 

where 

is the local sound speed and p ,  jT, B are the local fluid density, pressure and entropy; 
throughout, dimensional quantities will be denoted by a bar. Thus most of the 
previous studies concerned with the existence of expansion shocks in single-phase 
fluids have simply analysed the variation of pressure with density. 
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Two of the earliest studies concerned with the existence of expansion shocks in gases 
are due to Bethe (1942) and Zel’dovich (1946), who showed that, for sufficiently high 
values of the specific heats, Van der Waals gases are capable of admitting expansion 
shocks. An important recent study is due to  Thompson & Lambrakis (1973), who 
analysed the data of Martin & Hou (1955) and Hirschfelder et al. (1958) to  give specific 
examples of real fluids having T <  0. Finally, in the period of preparation of the 
present paper, Borisov et al. (1983) published direct experimental evidence of 
expansion shocks in Freon- 13. Effects associated with negative nonlinearity are also 
known tooccur insuperfluid *He (seee.g. Osborne 1951 ; Temperley 1951 ; Khalatnikov 
1952, 1956; Dessler & Fairbank 1956). Garrett (1981) has recently shown that finite- 
amplitude fourth sound waves in 3He-B can also exhibit the positive and negative 
nonlinearity in the same disturbance. Although our main interest here is in single-phase 
fluids, we note that expansion shocks have also been observed in fused silica by Barker 
& Hollenback (1970). Bezzerides, Forslund & Lindman (1  978) have also discussed 
such shocks in connection with two-fluid plasmas. 

The above studies confirm that r c a n ,  in fact, change sign for a class of single-phase 
fluids. This occurs on a line in ( p ,  @-space and, in this paper, we will refer to this as 
the transition line and its neighbourhood as the transition zone. When the undisturbed 
state is sufficiently far from this zone, every point on a given wave or pulse will 
correspond to either positive or negative values of T. Here the wave behaviour is well 
known even when a < 0, see e.g. Thompson 1971 ; Thompson & Lambrakis 1973). 
However, when the undisturbed state is sufficiently close to the transition line relative 
to the wave amplitude, the local value of r(p, 5) may change sign. As a result, one 
portion of the wave would correspond to r > 0 and another to T <  0, and the 
behaviour of the wave can be qualitatively different from that observed when the 
sign of r remains unchanged. This was first noticed by Thompson & Lambrakis 
(1973). who argued that these conditions could result in moderate-amplitude shock 
waves having sonic upstream and downstream conditions. Furthermore, Borisov et 
al. (1983) have correctly pointed out that  a partial disintegration of a given initial 
shock may occur. However, this conclusion was based on a local and, i t  turns out, 
incorrect application of the classical Burgers equation ; the correct analysis is given 
in the present study. I n  order to further our understanding of waves having both 
positive (T > 0) and negative (r < 0) nonlinearity, we have analysed the behaviour 
of one-dimensional small-amplitude waves propagating in a single-phase fluid whose 
undisturbed state lies in the transition zone. The disturbance size will be taken to 
be of the same order as that  of the fundamental derivative. As a result, different 
portions of a wave may correspond to  positive or negative values of r. The fluid 
motions will be assumed to  be governed by the usual Navier-Stokes equations; the 
thermodynamic variables and transport coefficients will be assumed to depend on two 
thermodynamic variables only, e.g. p and 5. Under certain circumstances, the regions 
of negative nonlinearity, i.e. those for which r< 0, may include the critical point 
as well as regions of large thermal buoyancy. However, Thompson & Lambrakis 
(1973) have concluded that these effects may be negligible over a reasonable range 
of densities. Thus, in order to  focus on the wave dynamics, we will follow these authors 
as well, as Borisov et al. (1983), in ignoring these effects. 

I n  $2, the equations of motion are introduced and rewritten in terms of non- 
dimensional variables. I n  §3  we ignore dissipative effects and derive the equations 
governing waves which may include shock waves. This is recognized as a weak-shock 
theory analogous to that developed by Whitham (see c.g. Whitham 1974). Admissibi- 
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lity conditions for shock waves are discussed and it is found that the usual condition 
requiring an increase in entropy across the shock is not sufficient to rule out 
inadmissible discontinuities ; the correct condition is given in terms of an ordering 
of the wave speeds along the lines suggested by Germain (1972). I n  $ 4  simple 
examples are used to illustrate the differences with the classical weak-shock theory. 
I n  $5 we include the effects of weak dissipation and derive the analogue of the Burgers 
equation. The shock structure is computed and it is shown that this no longer 
possesses the symmetry of the Taylor (1910) weak-shock structure. 

2. Problem formulation 

equations. The unsteady one-dimensional version of these equations is 
I n  this paper we consider fluids that are described by the classical Navier-Stokes 

pi+vpz+pv,- = 0, (2.1) 

wherep, ji, T, Band V denote the dimensional density, pressure, absolute temperature, 
entropy and velocity of the fluid. The quantities k, ,ii and 2 are the dimensional 
thermal conductivity and first and second viscosities respectively. Equations 
(2.1)-(2.3) represent the usual conservation of mass, momentum and energy. In  the 
inviscid limit, i.e. ,ii, A, k = 0, we must supplement the above differential equations 
with the following one-dimensional inviscid shock jump conditions : 

up] = UV], (2.4) 

@I ( U - v , )  (U---.1Sb) = -, 
Dl 

where v = p-l,  and hand U are the specific enthalpy and shock speed. The brackets 
denote jumps, i.e. [Q] = Qa-Qb, and the subscripts a and b refer to  conditions after 
and before the shock. Equations (2.4) and (2.5) require that mass and momentum 
be conserved across the shock; (2.5) is recognized as the shock adiabat or Rankine- 
Hugoniot equation expressing conservation of energy, and (2.7) is the usual entropy 
inequality. 

I n  all that follows we will take our dependent variables to bep(Z, t), S ( 5 ,  t) and fi(5, t) ; 
the quantities F, p, h, L, ,ii and A will then be given as smooth functions of p ,  S through 
state or constitutive relations. I n  the usual way, we will require that these 
constitutive relations satisfy the following inequalities for all values of p and S of 

p > O ,  2,ii+3h>0, L>O interest : 
(2.8) 

- 

and (2.9) 

where Fv is the specific heat a t  constant volume. The first set of inequalities are 
recognized as the conditions that the thermal conductivity, and the shear and bulk 
viscosities be positive. The second set of conditions corresponds to the conditions of 
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thermal and mechanical stability. When these are combined with the second law of 
thermodynamics, i t  is easily shown that 

(2.10) 

where C p  is the specific heat a t  constant pressure, 7 = Cp(p,  S ) / E v ( p ,  S )  and aplapl, is 
recognized as the square of the sound speed given by (1.2). 

As indicated in $ 1 ,  the main objective of the present paper is to  describe solutions 
to (2.1)-(2.3) in which the undisturbed state is within the transition region. Thus we 
will confine our attention to fluids in which r = T(p, S) changes sign and therefore 
which possess the transition region defined above. 

The undisturbed state will be taken to be uniform and a t  rest, i.e. U = 0, p = po, 
S = so, where the constants po and so are such that T(po ,  so) M 0. It is therefore natural 
to non-dimensionalize the above equations such that 

5= Lx, l?= La,'t, G =  aov,  7, = p o p ,  s = cvos,  

p = p o a i p ,  T r  TOT, h = hoh,  ,ii = popU,  
- - 

5 = k o k ,  i i= aou, h = ath,  V = polV, 

where L gives a measure of the length of the disturbance, and the subscript 0 denotes 
quantities evaluated a t  the undisturbed state po, so, i.e. for any dimensional quantity 
&= & ( p ,  S), Qo = g(po, so). As a result, (2.1)-(2.3) become 

Pt+vPx+P'Ux = 0, (2.11) 

(2.12) 

(2.13) 

where yo = y(po, so) and 
R=P&, p r s p a ,  E=--L; a2 

these are, of course, just the Reynolds, Prandtl and Eckert numbers. The inviscid-shock 
jump conditions (2.4)-(2.7) now read 

PO k0 To cvo 

u[Pl = [ P V I ,  (2.14) 

bl (u-va) (u-vub) = - 
[Pl ' 

(2.15) 

(2.16) 

(2.17) 

In  the following sections we will take the dimensional perturbation density levels 
to be of order epo ; as a result we will take 

v = O ( p - 1 )  = O(e)  = o(1).  

This will be assumed to be true a t  every point in the fluid; thus all shocks may be 
regarded as weak. I n  order that the undisturbed state lie in the vicinity of the 
transition line T(po, so) = 0, we will also require 

(2.18) Po - 
a0 

r = -r(po, so) = o(€) = o(i). 
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3. Weak-shock theory 
I n  this section we discuss inviscid solutions, i.e. solutions in the limit R+m, to 

the above equations of motion. When we ignore the right-hand sides of (2.12) and 
(2.13), the method of characteristics and standard thermodynamic identities may be 
used to show that 

must be satisfied on 

pdv+adp = -as,dt (3.1) 

(3.2) 
dx _ -  dt - v+a, 

where the non-dimensional function a = a(p,  s) is given by 

and 

The entropy s will be determined through the third characteristic relation 

dx 
dt - ” s = constant on - - (3.3) 

i.e. the entropy is constant on particle paths. Solutions to these characteristic 
relations generally result in shock formation. Once this occurs, (2.14)-(2.17) can be 
coupled with (3.1)-(3.3) to compute the resultant wave evolution. 

I n  any theory involving the propagation of shocks of non-uniform strength, i t  is 
essential to take into account the entropy and entropy gradients generated by these 
shocks. For weak shocks in an arbitrary fluid, Bethe (1942) has expanded the 
Rankine-Hugoniot relation (2.6) to show that 

(3.4) 

provided that rb + 0. However, in the case considered here, r i s  always of order @I. 
Thus higher-order terms in (3.4) can be of the same order as that shown. When we 
take (2.18) into account we find that the correct lowest-order expression for [8] can 

‘b 

bPb b 
PI = 6T -2 z5 [ir13+0(m3), 

be written 

P o  Po 

where r is defined in (2.18) and 

a0 d 

(3.5) 

Thus, in the transition zone, the size of the entropy jump across weak shocks is fourth 
order in the pressure jump. Not only does [i] depend on the value of before the 
shock, but also on its rate of change along an isentrope. Furthermore, if r = 0 just 
before the shock, the sign of the entropy jump is always that of the derivative ar/i3pls 
evaluated immediately before the shock. It will be shown later that (3.5) yields a 
simple relation between the entropy jump and the wave speeds on either side of the 
shock. 

As in more conventional weak-shock theories, (3.3) may be used to argue that the 
primary source of entropy gradients is due to variations in the strangth of any shock 
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waves embedded in the flow. We may therefore take our perturbation expansions to 
be of the general form 

(3.7) i 
v = B V ~  + € 2 ~ ~  + € 3 ~ ~  + o ( . c ~ ) ,  

p = 1 + epl + e2p2 + e3p3 + 0(e3), 

s = s, /c,~ + e4s4 + 0(e4). 

We now note that the lowest-order analysis of (3.1),  ( 3 . 2 ) ,  (2.14) and (2.15) shows 
that the variation of the shock strength is only noticeable over times and propagation 
distances of order F - ,  rather than e-l. Thus, for propagation times of order c - ~ ,  the 
integral 

j: s&, 7) dr 

evaluated on a characteristic defined by (3.2) is of the order of [s] ,  i.e. e4 at most. 
Thus, for the present purposes, the entropy-gradient term appearing in (3.1) is seen 
to be negligible. When this fact is taken into account and the expansions (3.7) are 
substituted in (3.1), (3 .2) ,  (2.14) and (2.15), we find that the perturbation equations 
corresponding to (3.1) and (3.2) are 

d(v,+p,) = 0 (3.8) 

and d(v,fp2) +Pld(Wl Tp,) = 0 (3.9) 
dx 
- = f 1 + € ( v l f p l ) + € 2 { v , f ~ z ~ - ~ l + ( 1  + f A ) p ; ) + 0 ( € 2 ) ,  (3.10) 
dt 

on 

and those corresponding to (2.14) are seen to  be 

11J1-P11 = 0, 

“Uz-Pn+P11.’1l = ~lb11> 
where = E - ’ r  = O(1) and 

(3.11) 

(3.12) 

u 1 = - -yV 2 la-Pla+~lb-Plb). (3.13) 

I n  the derivation of (3.11) and (3.12), we have expanded (2.15) to  obtain an 
approximation for the shock speed u appearing in (2.14). Here we restrict our 
attention to right-moving shocks, i.e. shocks that propagate in the positivex-direction. 
For this case, the expansion for u is found to be 

u - 1 + €U1 + €2U2 + 0 ( € 2 ) ,  

where u1 is given by (3.13) and u2 is defined by 

+r-+(l+;n+ . -Nl 
b31> 

u2 = A{v2a+V2b+-- b 2 1  [PI1 2 -+--- b1P2l [VlY HI2 
2 b,I2 Gol] 4 4b112 bll bll 

From (3.8) i t  is clear that vl-pl is a constant on the left-running characteristics 
defined by (3.10). Furthermore, (3.11) implies that  this Riemann invariant is also 
continuous across right-running shock waves. I n  the present study, we are only 
interested in cases for which the fluid is undisturbed sufficiently far ahead of any shock 
waves. As a result, v1 = p1 everywhere, including behind shocks. Thus (3.13) requires 
that u1 = 0, and (3.8) and (3.10) require that p, = constant on 

dx 
- = 1+e2(v,-p2+Fp1+ (l++n)p;)+o(E2). dt 
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Thus, in order to compute the distortion in the right-moving characteristics, we need 
to calculate the variation in v2 and p2 as well. The arguments that led to the above 
relation between v1 and p1 may now be applied to (3.9) and (3.12) to show that 
v2 = p2-p; everywhere. Thus the characteristic relations reduce to 

p1 = constant, (3.14) 

on 
- dx = 1 + € 2 ( P + + A p l ) p l + o ( € 2 ) .  
dt 

(3.15) 

The analogous result for 4th sound in 3He-B has been derived by Garrett (1981). 
Because of (3.14) it is clear that the right-moving characteristics (3.15) are always 
straight lines in the (2, t)-plane. Furthermore, the shock speed can now be written 

or, equivalently, 

= +$ 12F { ( P l a + P l b ) + ~ ( i ( P ~ a + P l a P l h + P ~ h ) } + 0 ( 6 2 ) .  (3.16) 

As in the classical weak-shock theory, (3.14)-(3.16) may be used to compute the 
details of a wide variety of initial- and boundary-value problems. This can be done 
by computing the flow field exactly with (3.14) and (3.15). The motion of any 
discontinuities can then be calculated through use of (3.16). Alternatively, we can 
also make use of an area rule analogous to that of Whitham (see e.g. Whitham 1974). 
We have found that such an area rule may be derived under fairly general conditions; 
this has been worked out in the Appendix. 

We now note two special cases; in the first IAp,l is negligible compared with IFI, 
and in the second P = 0 and A =k 0. In  the first case the variation of r(p, S) with 
density along an isentrope is negligible, at least to the order considered. As a result, 
the local value of r is effectively independent of the size of the perturbation pl,  and 
the wave behaviour is the same as the case where r i s  an order-one constant. As 
pointed out by the previous investigators, the only discontinuities possible are 
expansion shocks when r < 0 and compression shocks when r > 0. 

In the second case, the undisturbed state is on the transition line. For A > 0 
portions of a wave having p1 < 0 have local values of r that are less than zero, and 
those having p1 > 0 correspond to values of r greater than zero. This case is 
recognized as being mathematically analogous to that considered by Lee-Bapty 
(1981) and Crighton (1982), and we therefore refer the reader there for further 
examples. 

It is also of interest to notc that when F = 0 and bh E 0 (3.16) may be combined 
with (3.15) to show that 

u-1 =s(zla-l). 1 dx 

Thus, in a coordinate system moving with the undisturbed sound speed, the shock 
speed is a third rather than a half of the wave speed immediately after the shock. 

As indicated by the above special cases and the examples of $4, solutions to 
(3.14)-(3.16) can be quite complicated and may involve phenomena not possible in 
the conventional weak-shock theory. At this stage it is useful to discuss the types 
of discontinuities possible near the transition line T@,S) = 0. 

Certainly, a necessary condition for the existence of any discontinuity is that  i t  
can be formed through the steepening of an initially smooth pulse. As an example, 
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we note that such a mechanical condition eliminates the possibility of expansion 
shocks in fluids having r> 0 everywhere and compression shocks in fluids having 
r < 0. A simple way to check this is to compute the shock-formation time associated 
with (3.14) and (3.15). It is easily shown that a portion of an initially smooth density 
distribution p1 = pl(x,  0) first results in infinite slopes, i.e. infinite values of pls(x, t),  
when 1 

(3.17) 

where the maximum of the absolute value of the denominator is to be taken; the latter 
condition determines where on the profile the shock first forms. Positive shock 
formation times correspond to negative values of the product 

thus both expansion shocks (pls(x, 0) > 0) and compression shocks (p,(x, 0) < 0) are 
possible, depending on the value of pl(x,  0) relative to the constants T and A .  In  $4, 
the shock-formation process is illustrated through use of simple examples. 

A second requirement for the existence of a discontinuity is that a physically 
realizable structure can be constructed ; this condition is discussed further in $ 5 ,  where 
the continuum shock structure is delineated. Finally, if a discontinuity is already 
embedded in a flow, a reasonable requirement is that the speed of the shock (3.16) 
lies between the wave speeds on either side; i.e. that  

(3.18) 

where dxldtl, and dz/dtlb are the quantities (3.15) evaluated a t  pla and plb 
respectively. Condition (3.18) has been suggested by Germain (1972), and is equivalent 
to the entropy condition of Lax (1971). This ensures that the conditions at the shock 
depend in an appropriate way on the initial conditions. The results (3.15) and (3.16) 
may be used to show that (3.18) is completely compatible with both compression and 
expansion shocks. 

Although the condition (3.18) has been written in terms of inequalities, we have 
found that shocks having speeds equal to one wave-speed or the other are not only 
possible, but in some cases necessary. This is analogous to the Chapman-Jouguet 
point in the theory of detonation and deflagration shocks (see e.g. Hayes 1960; 
Courant, & Friedrichs 1948), and has also been predicted by Lee-Bapty (1981) and 
Crighton (1982) in the context of viscoelastic waves. In  the following we will refer 
to these conditions simply as sonic conditions. If (3.15) is combined with (3.16), the 
following useful result may be derived 

Furthermore, if sonic conditions hold after the shock, these same equations may be 
used to show that 

Thus, when A > 0, these results may be used to show that sonic conditions can occur 
after the shock only if 

dx I 
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Because this contradicts the second inequality in (3. IS), we reject this possibility and 
conclude that, when A > 0, sonic conditions can only occur before the shock; it is 
easily verified that this latter possibility is completely consistent with (3.18). Thus, 
when A 0, we will take as our generalization of (3.18) the requirement that 

(3.19) 

We may show by similar reasoning that, when A < 0, sonic conditions are only 
possible after the shock. As a result, when A < 0, we will take the generalization of 
(3.18) to be 

(3.20) 

We have also found that i t  is possible to rewrite the conditions (3.19) and (3.20) 
directly in terms of the density perturbations before and after the shock. In  order 
to present our results as concisely as possible, we will define 

@ = + Pl, (3.21) 

which will be useful as long as both Fand A are non-zero. Conditions (3.19) and (3.20) 
may now be used to show that the permissible values of @a and @b lie between the 
lines fib = @a and @b = -+(Fa + 3) for A > 0, and between @b = @a = - 2(ca + 3) for 
A < 0. The precise regions are depicted in figure 1 ;  the shaded regions denote 
forbidden (@a, bb)-pairs, and values of @a and @b in the unshaded regions represent 
shock waves satisfying either (3.19) or (3.20). A similar diagram can be constructed 
for the case p =  0 with A =t= 0, and when A = 0 with r+ 0 the forbidden region is 
given simply by the half-space ~TJI,] < 0. 

It is also of interest to note that, when (3.15) is combined with (3.5), we obtain the 
following relation between the non-dimensional entropy jump and the jump in the 
wave speed: 

where 

Because is the absolute temperature and because of the inequalities (2.10) we see 
that the entropy increases across all discontinuities satisfying (3.19) or (3.20). 
However, unless A = 0, the entropy inequality (2.17) does not necessarily imply (3.19) 
or (3.20). Thus, unless A = 0, with p +  0, the conditions (3.19) and (3.20) are seen 
to be stronger than (2.17); remarks similar to these are found in Hayes (1960). 

I n  their analysis of kinematic waves, Lighthill & Whitham (1955) have pointed out 
that results such as (3.14)-(3.16) could be represented graphically by plotting the 
quantity 

versus 8; a plot of this is found in figure 2. It is easily verified that 

(3.22) 

and that 
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I 

FIGURE 1 Regions of admissible shock waves. Values of fia and Cb in shaded regions violate (3.19) 
and (3 20). The line Fb = -+(;,+3) corresponds to  sonic conditions before the shock 

t -4 
FIGURE 2. Plot of; versusj. Line 1-2 represents an admissible shock, 1-3 a shock having sonic 

conditions at 3, and 1-4 an inadmissible shock. 
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FIGURE 3. Structure of centred fans; x = (f-f.,) i-l. 

that is, the slope of this curve is directly related to the slope of the characteristic lines, 
and the slope of a straight line connecting any two points on this curve is essentially 
the shock speed corresponding to a shock having jump [PI]. Shock waves having sonic 
conditions correspond to shock lines that are tangent to the (5, B)-curve. Furthermore, 
an analysis of (3.19) and (3.20) or, equivalently, figure 1, shows that only shocks that 
do not cut the (j,&curve can satisfy (3.19) or (3.20); such an inadmissible 
construction is given by the line 1 4  in figure 2. 

The analogue of (3.22) valid when A = 0 with =k 0 i s j  = ?jpfT, which corresponds 
to the p^ x 0 region of figure 2. When f = 0 with A =!= 0 the analogue is j = $ p;A. 
This purely odd function could be approximated by the large- behaviour of (3.22). 

Inspection of (3.15) or figure 2 clearly indicates that the slopes of the characteristic 
lines have a local maximum or minimum at p1 = - F / A .  This plays an important role 
in the analysis of specific examples. In particular, centred expansion or compression 
fans have limitations on their strength and may need to be supplemented with 
expansion or compression shocks having sonic conditions before or after the shock. 
Thus to conclude this section we will give a brief discussion of the structure of centred 
fans (figure 3). Because of (3.14), the characteristics are always straight lines, and, 
in the fan, will all be taken to be emanating from the point x = xo,  t = 0. We may 
then integrate (3.15) and invert to express the density perturbation p1 as a function 
of space and time. The resultant expression for p1 can be written 

p =--+ i= i"; - 2 x-t-xo}i 
A -  A2  s2A t 

, 

A 
or, if we define t^ = szt, D = p ( x - t ) ,  (3.23) 
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(3.24) 

where So 5 x,, A / f 2  and @ is given by (3.21). The distribution (3.24) is a parabola 
having an axis of symmetry p1 = - P / A  or @ = - 1 .  This contrasts with the linear 
distribution found in conventional weak-shock theories. A second difference is that 
two distinct types of fan are possible. The first allows smooth transitions between 
any two points in the range - 1 < @ and the second between two points in the range 
@ < - 1.  Larger transitions, e.g. between @ = 0 and @ = -:, cannot be achieved by 
a single centred fan; in the examples of $ 4  we shall see that a shock-fan combination 
may be sufficient to carry out the desired transition. 

4. Weak-shock theory : examples 
Because of the large number of cases to  be considered, i t  will be convenient to 

present our results in terms of the variables defined by (3.21) and (3.23). The 
equations of the characteristics (3.15), shock speed (3.16) and conditions on the 
relative wave speeds (3.19) and (3.20) may now be rewritten as 

and (4.3) 

where gS = gS(t") is the position of a shock. These variables clearly give a natural 
representation of the wave dynamics, and we will refer to these as universal variables. 

The obvious advantage of universal variables is that we may present one set of 
results instead of four sets corresponding to each permutation of the signs of f and 
A .  For example, if, in universal variables, @ = f ( 2 ,  f), then 

If we consider plots of p1 versus x-t with t fixed, it is clear that the plots for A > 0, 
P > 0 will simply be stretched versions of the 6 versus 2 plots. The plots for f < 0, 
A > 0 may then be obtained by reflection about the (x-t)-axis and those for f > 0, 
A < 0 may be obtained by reflection about the p1 axis. The results for f < 0 and 
A < 0 clearly will require reflection about both axes. It is important to note that the 
conditions before the shock become those after the shock and vice versa when the sign 
of A is changed; when this is noted it is easily seen that the single condition (4.3) 
is completely equivalent to the two conditions (3.19) and (3.20). However, the 
exchanging of the after and before conditions comes out naturally and causes no 
difficulty if we are simply transforming results already obtained in universal variables 
to those involving pl ,  x and t. 

I n  the remainder of this section we will use the term expansion to refer to an 
increase in 6 with respect to 2,  and compression to refer to a decrease in @. Although 
the actual density variation may be exactly the opposite, this again comes out 
naturally in the transformation process and should cause no confusion. 
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FIGURE 4. Shock formation for A = 3.0. Compression shock forms a t  peak. 

Our first set of examples is designed to  describe the process of shock formation. 
I n  order to  emphasize the differences between the present theory and classical 
weak-shock theory we have examined the behaviour of a triangle wave having initial 
density distribution 

A(1-2) (0 < f < l ) ,  

A ( l + f )  ( -1  < % G O ) ,  

0 otherwise. 

I n  each case the profiles and shock formation times were computed with (4.1) and 
(3.17), and the profile(s) a t  formation were plotted along with the initial condition. 
In  figure 4 the case A = 3 has been plotted; this is typical of all cases having A > 0. 
When A > 0, > 0 the local value of T is greater than zero everywhere; as a result 
the profile steepens forward, forming a compression shock. However, because the 
slope of the characteristic lines depends nonlinearly on 6, the initially straight lines 
in figure 4 become parabolas and the shock forms at the point of maximum amplitude, 
i.e. at the characteristic originating a t  P = 0, with zero initial strength. Because the 
initial strength is zero, the shock speed (4.2) can be approximated by 

and immediately after formation the propagation can be computed with the usual 
angle bisection rule (Whitham 1974). 

I n  figure 5 the behaviour of the case where A = -0.75 is depicted. I n  this case the 
distortion is to the left, indicating that the local wave speed is everywhere less than 
the undisturbed sound speed. Here the compression shock forms not at the point of 
maximum IFI, but on the characteristic originating a t  2 = - 1. 
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FIGURE 5 .  Shock formation for A = -0.75. Compression shock forms at 2 = - 1. 

1 

-1 

-1 0 I 110 
X 

FIGURE 6. Shock formation for A = - 1.5. Compression shock first forms at  z = - 1 and expansion 
shock then forms on characteristic originating a t  x = 0. 
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FIGURE 7. Shock formation for A = -2.0. Both compression and 
expansion shocks form at same time. 

When A < - 1 the sign of f i s  different in different parts of the wave. We therefore 
cannot expect even qualitative agreement with classical weak-shock theory. In  figure 
6 the evolution of a wave having A = - 1.5 has been plotted. Here we find that a 
compression shock first forms at t" = 0 on the characteristic originating at 2 = - 1.  A 
second expansion shock then forms a t  t" = $ and a t  the point of maximum 1/51. 

In  figures 7 and 8 the behaviour of waves having even smaller values of A have 
been depicted. Although the number and types of shocks generated are the same as 
in figure 6, the nonlinear dependence of the wave speed (4.1) on /5 results in new 
features which are also of interest in flows having discontinuities even a t  t" = 0. 

I n  figure 7 the case A = - 2  has been plotted. The shock formation time for both 
shocks is the same, and, because the wave speed (4.1) corresponding to  /5 = -2 is also 
zero relative to  the sound speed of the undisturbed medium, the expansion shock 
forms a t  2 = 0. When A < - 2 portions of the wave having - 2 < /5 < 0 propagate 
at a speed smaller than that on the undisturbed medium and portions having < - 2 
propagate at a larger speed, resulting in the profiles plotted in figure 8. For A < - 2 
the expansion shock always forms first and the compression shock a t  2 = - 1 second. 

I n  the case A = 0 and f =+ 0 the shock formation process is essentially the same 
as in the classical weak-shock theories where the triangle wave remains a triangle and 
the initial strength of the shock is equal to A. In  the case A + 0, P = 0 and initial 
condition 

10 otherwise, 
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FIGURE 8. Shock formation for A = -3.0. Expansion shock first forms and 
compression shock then forms at z = - 1. 

the wave behaviour for A > 0 is essentially the same as that seen in figure 4. For 
A > 0 the wave steepens forward to  form a compression shock at the peak of the wave, 
and for A < 0 the steepening is to the left to form an expansion wave; in both cases 
the shock forms when t = The propagation for A < 0 is identical with that 
for A > 0;  in each case the latter profile simply needs to be reflected about the 
(x--t)-axis in a plot of p1 versus x--t. 

To illustrate the behaviour of shock waves we now discuss square pulses cor- 
responding to the initial condition 

A ( - - 1 < 2 < 1 ) ,  

0 otherwise. 

The subsequent evolution will be computed using (4.1) and (4.2), and the inequalities 
(4.3) used to eliminate inadmissible discontinuities. When A > 0 the wave behaves 
as indicated in figure 9. Initially the compression shock propagates to the right with 

'A(1 +;A) .  
a constant speed of 

2 

The expansion fan emanating from 2 = - 1 eventually catches the shock, resulting 
in a monotonic decay of the strength and speed of the shock. If we define pa = F ( f )  
to be a measure of the shock strength, the decay law is found to be given by the 
following implicit equation : 

Once F ( f )  is obtained from (4.4), the position of the shock is given by 

f P ( F + t )  = 6A.  (4.4) 

6A(2 + F )  
F( 3 + 2F) . 

2. ,=-1+ 
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FIGURE 9. Wave evolution for A = 1.0. 

Provided that + 0, (4.4) may be used to  show that, as t^+ 00, 

which is essentially the same decay law as in the classical theory. 
When - 1 < A < 0, the behaviour of the wave is again essentially the same as in 

the classical theory; this is illustrated in figure 10 for the case A = -0.9. When 
A < - 1 the transition from b = 0 to b = A cannot be achieved through a single 
expansion fan centred a t  2 = 1 (see e.g. figure 3).  For -: < A < - 1 the overall wave 
structure is essentially that of figure 11 ; here we see that an expansion shock must 
be inserted between the constant-density region and the fan emanating from 2 = 1 .  
The value of 8 after the shock is A, and before the shock the conditions must be sonic. 
As a result, the density before this shock is 

(4.5) bb = -&4+3) > -1, 

and the shock strength and speed are given by 
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FIGURE 10. Wave evolution for A = -0.9. 

For this range of A the expansion shock propagates with a constant strength and 
speed until it collides with the compression shock originating at 2 = - 1 ; the time 
a t  which this occurs is 48(A + 3)-2. Immediately after the collision we find that only 
a single shock exists; i.e. the collision results in a merging of the expansion and 
compression shocks. The density perturbation immediately after the shock is 
therefore zero, the perturbation before the shock is just (4.5) and the resultant shock 
speed is 

It is easily shown that the absolute value of (4.6) is always less than that of the original 
compression shock. Thus the new shock formed by the merging process is slower, at  
least in the (2,l)-plane, than either of the original shocks. As a result, the interaction 
with the expansion fan will continually slow this shock and cause it to decay. The 
equation governing the interaction is similar to (4.4) and the ultimate decay will again 
be governed by the classical t'-a law. 

We note that when A = -$ the speed of the compression shock originating at 
2 = -1  is exactly equal to the wave speed just before the shock. If JAI is increased 
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FIGURE 1 1 .  Wave evolution for A = - 1.4. 

beyond $ the inequality (4.3) can no longer be satisfied for a single shock having Fa = 0 
and Bb = A .  The correct wave behaviour for cases having - 3  < A < -1 has been 
plotted in figure 12. The compression from b = A to p" = 0 is accomplished first 
through a compression fan and then through a compression shock. Before this shock 
sonic conditions hold, and just after we have ba = 0. Thus, the strength and speed 
of this shock are 

(4.7) @ ] = - p "  - 3  --- d%- i; 
b - 2, dt 

these are the same for all values of A < -+. The structure of the compression fan seen 
in figure 12 is given by choosing the lower sign and 2o = - 1 in (3.24) ; this is essentially 
the lower branch of the parabola found in figure 3. The expansion shock originating 
a t  2 = 1 will penetrate this fan a t  time 

16 1 t = t  
O -  3 ( A + l ) * '  

The resultant interaction will decrease the strength of the expansion shock such that 

(4.8) 

2 T L X  142 
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FIGURE 12. Wave evolution for A = - 2 . 2 .  

After the interaction begins, the expansion fan originating a t  li. = 1 will no longer be 
followed by an expansion shock but a smooth precursor wave which in turn is followed 
by the expansion shock. The expansion and compression shock ultimately collide a t  
time (t" = io(-2(1+A))f ,  

and merge to form a single compression shock. An instant before the collision, the 
comprcssion shock is described by (4.7) and expansion shock is given by 

= - 3  bb=-;, - = - _ 5  dgS 
32 di  2 ,  

for all A in the interval of interest. Immediately after the collision we take ba = 0 
and /jb = -$, which from (4.2) yiclds a shock speed 
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FIGURE 13. Wave evolution for A = -3 .5 .  

which again implies that the speed of the new shock is larger, i.e. less negative, than 
that of the merging shocks immediately before the collision. Owing to interaction with 
the precursor and, later, with the centred fan, the shock then decays to acoustic 
conditions a t  infinity. 

In  figure 13 the wave structure typical of cases having A < - 3  has been plotted. 
The new feature here is that the expansion shock originating a t  2 = 1 must now 
propagate in the positive %-direction. The expansion fan a t  % = 1 is no longer present 
and the initial shock speed is computed by substituting ba = A ,  bb = 0 in (4.2). The 
interaction with the compression fan slows the shock, which becomes stationary in 
the (2 ,  $)-plane when Fa = - 3. After this time, the shock moves to the left and its 
strength is given by an expression similar to (4.8). The subsequent details are 
essentially the same as those seen in figure 12, and, in particular, the details of the 
collision and merging of the expansion and compression shock are identical with the 
case - 3  < A < -:. 

The special cases where either A or f are zero have also been examined. As 
expected, the case + 0, A = 0 is essentially the same as the classical theory, and 
the case f = 0, A =t= 0 closely resembles the rases described above in the limit / A (  4 m.  
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However, in the latter case the shock-fan interaction results in a different decay law 
than the t-: law of the classical theory. For a square pulse we find that 

Ip,] = fit-:, 

for all values oft after the interaction begins; here K is the usual integration constant. 
Thus, when r = 0, the asymptotic decay rate is much smaller than that of the classical 
theory. In  general, when = 0, A =t= 0,  a one-signed smooth pulse always generates 
a single shock for which 

lpl] - (%:+O(F-i) (4.9) 

M = j Pl(L 0) d5. 

as f +  00, where f is given by (3.23) and 

00 

--a, 

When A > 0 we may take plb z 0 in (4.9), and, when A < 0, pla can be neglected. 

5. Dissipative effects 
To derive the equation governing the evolution of weakly dissipative waves, 

(2.1 1)-(2.13) will be approximated through use of the method of multiple scales. As 
in the previous sections, we will confine our attention to small-amplitude solutions 
and therefore make use of the expansions (3.7). However, because the dissipative 
terms on the right-hand sides of (2.12) and (2.13) generate an order-e3 perturbation 
to the entropy, the expansion for s is (3.7) will be replaced by 

8 
s = 2 + € 3  s ,+o(e3 ) .  

CtlO 

In  order that  the effects of dissipation be noticeable over the same timescales as the 
nonlinearity, we will require that R = O ( C ~ )  rather than e-l. In  order that  the 
undisturbed state be in the vicinity of the transition region, we will also require that 
(2.18) be satisfied. This, of course, is not used explicitly until the pressure and 
temperature are expanded in Taylor series about the undisturbed state. 

The equation governing the evolution of pure right-moving pulses may now be 
derived through a straightforward application of the method of multiple scales ; the 
version used is essentially that described in Chapter IV of Leibovich & Seebass (1974). 
In  terms of the variables (3.21) and (3.23), the resultant equation governing p1 is found 

where 

and Po = p(po, so). The quantity S is essentially the acoustic diffusivity for a general 
fluid; the conditions (2.8) and (2.10) ensure that S > 0 for all fluids considered here. 
A heuristic derivation of (5.1) would be to simply construct the left-hand side of (5.1) 
using the characteristic relations (3.14) and (3.15) or, alternatively. (4.1). The 
right-hand side can be taken directly from the linear theory for a general fluid. In 
his analysis of viscoelastic media, Lee-Bapty (1981) has derived the = 0 version 
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of (5.1), and a detailed discussion of the wave evolution of this equation is given by 
Crighton (1982). 

Nimmo & Crighton (1982) have provided a comprehensive discussion of the 
application of Backlund transformations to a general class of parabolic equations. 
The conclusion of this study is that, except for relatively simple extensions of the 
classical (quadratic) Burgers equation, such transformations are not useful in 
generating exact solutions. Thus, in the absence of such exact procedures we have 
resorted to numerical techniques; these will be presented separately. Our main 
interest here is to  use (5.1) to describe the continuum weak-shock structure for fluids 
in the vicinity of the transition zone. This may be formally derived by transforming 
to a coordinate system moving with the unknown shock speed S and then assuming 
that the shock structure is approximately steady in this coordinate system. When 
this is done, (5.1) becomes 

8 / 1 2  

7 2p b@ = ibg + fb"[ - Sb@ (5.2) 

where 6 = ?-St". We now seek solutions b = b(LJ to (5.2) that satisfy 

and, for the sake of convenience, we will take 

Integration of (5.2) with respect to ( yields a first-order equation governing $. 
Furthermore, (5.3) can be used to verify the expected result that  S is given by (4.2). 
If b and are replaced by 

it can be shown that G satisfies 

G = (G2-1)  (G+B) ,  (5.4) 

where the prime denotes differentiation with respect to [, 

G + - 1  as [+a, 

G(0) = 0, 

and 

(5.5) 

A straightforward qualitative analysis shows that solutions for G satisfying (5.4) and 
(5.5) are possible only if B 3 1. The significance of this result is seen by relating it 
to the shock and wave speeds. Ifwe combine (5.6) with (4.1) and (4.2) i t  is easily shown 
that 
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FIGURE 14. Shock structure. R = 1.0 corresponds to a shock having sonic conditions as g- co. 

The condition that B > 1 ,  i.e. that  a viscous structure of the above form exists, 
therefore requires that (4.3) be satisfied for all admissible shocks. Thus the viscous 
evolution equation (5.1) not only yields the characteristic and shock speed relations 
found in $3  but also requires that the speed-ordering relation (3.19) and (3.20) or, 
equivalently, (4.3) be satisfied for all admissible shocks; in this sense the viscous 
theory is more complete than the weak shock theory. 

Although the key result concerning the wave speeds and the fact that  G is a 
monotonic transition between its asymptotes can be given through a qualitative 
analysis, we may also integrate (5.4) to  obtain the details of the shock structure. For 
61 > 1 we find that 

and for B = 1 
1-G G f = $1n----- 
1 + G  1 + G  

It is easily seen that the case B = 1 corresponds to sonic conditions before the shock. 
Thus, when sonic conditions hold, the solution for G approaches the upstream 
asymptote algebraically in f rather than exponentially. This relatively slow approach 
is clear in figure 14, where (5.7) and (5.8) have been plotted. The original equation 
(5.4) can also be used to compute the position of the inflection point of (5 .7)  and (5.8). 

G = - +B + ($B2 + +)+. 
This is found to be 

Thus tzhe additional nonlinearity in (5.4) shifts the inflection point downstream of 
the point where attains its average value. This fact can also be seen by inspection 
of figure 14. 

6.  Summary 
The propagation of small disturbances in a fluid having both positive (f; > 0) and 

negative (f; < 0) nonlinearity has been examined. The undisturbed state is taken to 
be in the vicinity of the transition line T(p, S )  = 0. As a result, different parts of the 
wave could correspond to either positive or negative values of r. The resultant wave 
evolution is seen to differ considerably from that of the classical theory; this is 
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primarily due to the fact that higher-order nonlinear terms must be included in even 
the lowest-order description. The evolution of inviscid and purely right-moving waves 
is governed by (3.14)-(3.16). Inadmissible shocks were eliminated through use of the 
inequalities (3.19) and (3.20). When dissipative effects are included, the evolution is 
governed by (5 .1);  this is recognized as an extension of the well-known Burgers 
equation. The shock-structure analysis shows that (5.1) not only contains the 
characteristic and shock-speed relations (3.14)-(3.16) but the admissibility conditions 
(3.19) and (3.20) as well. 

Although the constitutive relations arc simply those of a single-phase Navier-Stokes 
fluid, we find that shocks having either upstream or downstream sonic conditions are 
possible. The shock-structure analysis of $5 shows that the sonic conditions are 
approached algebraically rather than exponentially. We have also found that shocks 
exist in which the local value of the fundamental derivative changes sign across 
the shock. This is seen to be in agreement with the remarks of Thompson & Lambrakis 
(1973). 

The examples of $ 4  clearly suggest that, in spite of the complicated initial evolution, 
the ultimate decay of the waveform will always be that of the classical theory. The 
main exception to this is the case where = 0 and A + 0;  here the shock amplitude 
decreases as the negative ;-power of the propagation time. 

The scope of the present study is confined to small-amplitude waves. However, we 
expect that many of the qualitative features and new phenomena discussed here will 
also be observed in large-amplitude waves for which the local value of achanges sign. 
Unfortunately, the double Chapman-tJouguet shock, i.e. where sonic conditions exist 
both upstream and downstream of the shock, is not contained in the present theory. 
The larger degree of nonlinearity necessary is typically contained only in shocks of 
moderate strength. We have also found that, when both f a n d  A are simultaneously 
zero, a perturbation theory similar to  the present theory may be developed which 
contains such shocks. The results obtained will be valid in a neighbourhood of the 
point where an isentrope is tangent to the transition line. Because of the even higher 
degree of nonlinearity, this theory is expected to contain most of the qualitative 
features of a moderate-strength theory although the timescales are of order of the 
negative-third power of the wave amplitude. 

Finally, i t  is expected that much of the phenomena discussed here will also be found 
in fluids such as liquid helium in regions where the appropriate nonlinearity 
parameter is sufficiently small. 

The authors would like to express their gratitude to H. B. Nguyen for his 
assistance in computation and plotting, one of the referees for pointing out the 
references concerning liquid helium, and D. G. Crighton for a number of valuable 
comments and references. One of the authors (A. Kluwick) gratefully acknowledges 
thc hospitality of the Department of Engineering Science and Mechanics, Virginia 
Polytechnic Institute and State University, during the preparation of this work. 

Appendix 
As earlier, p ,  j, J: and t denote the density, the related mass flux, the spatial 

coordinate and the time. In  the most general case of a kinematic wave propagating 
into a homogeneous medium, the field quantities satisfy the continuity equation of 
the form 

X , ( t )  

P(x’ , t )dx+~lp(xl , t ) -~. ,p(x, , t )  =j(xl,t)-j(x2,t), (A 1) 
dt X , ( t )  
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where xl(t) and x2(t) are arbitrary functions o f t ,  and dots denote derivatives with 
respect to time. Equation (A 1) is recognized as a generalization of the conservation 
law used by Lighthill & Whitham (1955) and Kluwick (1977) to include the effects 
of a moving control volume. Furthermore, j and p are taken to satisfy the functional 
relationship 

Thus the How is governed by the (kinematic) wave equation 

(A 2) j = j ( P L  

in regions where p and j are continuous and differentiable, while lines across which 
p and j change discontinuously propagate with the shock speed 

To specify solutions to (A 1) and (A 2) an initial condition 

p(z,Of = F(x) (A 5 )  
will be imposed. 

condition (A 5 )  can be written in the form 
As is well known, the solution to the wave equation (A 3) subject to the initial 

x = 7+z.'w(P) 4 
where 7 is constant along characteristic lines dx/dt = v, provided that all charac- 
teristics 7 = constant emanate from the x-axis. If dv,/dT < 0 inside some interval of 
the x-axis a t  t = 0, the distribution of the field variables (A 6) will become multivalued 
for 

dx 

where the maximum of the absolute value of the denominator has to be taken. For 
t > t,, weak solutions to (A 1) and (A 2) have to be calculated in which these regions 
of multivaluedness are eliminated by the insertion of shock fronts. To this end i t  is 
convenient to determine first the stream function $ satisfying 

w ?$ 
ax at . P = -  3 = - -  

Combination of (A 6) and (A 8) then yields 

$ = - r F ( I ) d x + ( i - p ~ ~ ) t .  
0 

Since x(7, t )  and $(7, t )  are continuous across shock fronts (the latter condition being 
an immediate consequence of (A 4)), we obtain the conditions 
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FIGURE 15. Generalized area rule: -, density distributions at ( a )  t = 0 and ( b )  t = t ,  > t , ;  ----, 
density distribution inside the multivalued region ; ---, density distribution R( 7) that maps 
exactly into the shock discontinuity at t = t,. 

where 7, and rb denote the values of the characteristics that merge with the shock 
a t  time t .  

Elimination of t from (A 10) results in the following relationship between qa 
and vb :  

By solving for 7, = ~ ~ ( 7 ~ )  say, by combining (A 6) with one of (A lo), then yields the 
curve of the shock front in the (s, t)-plane in parametric form : s = ~ ( 7 ~ ) .  t = t(7,). 

In  the case of simple acoustic waves in a perfect gas j = i r p z ,  (A 1 1 )  reduces to 
the well-known Whitham area rule (e.g. Whitham 1974). It is interesting to note, 
however, that (A 1 1 )  can be interpreted as an area rule even without this assumption. 

This can be seen most easily if the following problem is treated first. For a given 
value o f t  = t ,  and corresponding values of va, qb, let us replace the initial density 
distribution F ( 7 )  inside 7, < 7 < qb by a different distribution R(7) for which 
F(7,) = R(qa), F(qb) = R(vb) such that the new distribution is mapped into the shock 
discontinuity a t  t = t ,  (see e.g. figure 15). The problem of finding R(7) is closely related 
to the problem to determine the density distribution inside a centred fan. Obviously 
it is necessary that all characteristics qa < 7 < 7b focus in one single point, which 
means that v,(R) has to vary linearly with 7. Therefore R(7) is defined implicitly by 
the requirement 

121 1 Uw(R) = V w a  + (7 - Va) w. 
[TI 

(A 12) 

Next let us calculate the total mass inside the interval qa < q < qb following from 
(A 12). Using the relationship pdz?, = dCj-pu,) and (A 11) we obtain 

In the notat'ion of figure 15 this result, assumes t'he form of an area rule 
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Tharefore t,tw values qa and T~ of c.haractcristics that  merge with the shock front a t  
a ccrt.ain t,imc are re1at)etl in such a way that the total inass inside the interval 
'la < < rb is equal to  thc total mass of the density distrihut'ion that maps exactly 
inbo the shovk discontinuity at' the same time. If the wave speed ,vw is proportional 
to t'hc density p,  as in bhe case of classical gasdynamics, (A 1%) leads to a linear density 
distribution in agreement with Whitham's area rule. For the problem consickred in 
this study, one obtains 

(A 1.2) 

C'omparison of (A 14) with (3.24) once more shows the close relationship of the density 
distribution entering the formulation of the area rule and that inside a centred wave 
fan. 

It has been shown by Lighthill (1957) that the continuity of the stream function 
across shock fronts leads to the area rule of Landau when p is plottcd as a function 
of x for fixed t .  Using the notation of figure 15, this area rule can be expressed in 
the form 

The above considerations then indicate the close relationship between the area rules 
(A 1 1 )  and (A 15). Equation (A 1 1 )  follows directly from (A 15) by calculating the 
corresponding initial distribution using the integrated slope condition (A 6). At this 
point, however, a limitation of (A 11) and its equivalence with Landau's area rule 
has to be noted. Since the derivation of (A 1 1 )  is based on the integrated slope 
condition (A 6). the above considerations are valid only as long as the characteristics 
'la and rb both intersect the x-axis. In general this requirement is no longer satisfied 
if the shock speed is equal to  one of the characteristic wave speeds immediately 
upstream and downstream of the shock front, and (A 1 1 )  ceases to be valid. Thus, 
when sonic conditions hold, only Landau's area rule can be applied, while thc 
generalization of Whitham's rule (A 13) cannot. 

(A 15) A; = A;.  
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